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Resumen

El problema de ruteo de vehículos con demandas estocásticas (VRPSD) se propone encontrar la mejor 
ruta vehicular con el mínimo costo esperado. Este trabajo presenta dos enfoques para evaluar la función 
objetivo del VRPSD con descarga preventiva usando algoritmos genéticos (GA). El primer enfoque se 
basa en programación dinámica (DP) usando una recursión en reversa. El segundo enfoque está asociado 
a un modelo de simulación en el que se utilizó simulación Monte Carlo. Los enfoques presentados se 
compararon con el propósito de establecer cuál ofrece mejores estimaciones de los valores de la función 
objetivo. Los resultados computacionales muestran que aunque el enfoque DP provee mejores estimaciones 
en términos de valores de función objetivo que la simulación Monte Carlo, éste brinda resultados cercanos 
a los de DP con una reducción significativa del tiempo computacional en comparación de DP.
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Abstract

The single Vehicle Routing Problem with Stochastic Demands (VRPSD) looks to find the best vehicle 
route with the minimum expected cost. This paper presents two approaches to evaluate the objective 
function of the VRPSD with preventive restocking using Genetic Algorithms (GA). The first approach is 
dynamic programming (DP) using a recursion that moves backward from the last node of the sequence. 
The second approach is based on a simulation model in which Monte Carlo simulation is implemented 
for this purpose. The presented approaches were compared in order to establish which one offers a 
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better estimation of the objective function values. The computational results show that although the DP 
approach provides better estimations in terms of objective function values than Monte Carlo simulation, 
the second approach gives results close to the DP and with a significant reduction of the computational 
time with regard to DP.

Keywords: VRPSD; Dynamic Programming; Monte Carlo simulation; Genetic Algorithms

Introduction

The deterministic Vehicle Routing Problem (VRP) 
is a combinatorial optimization problem classified 
in the class NP-Hard (Toth & Vigo, 2002). Formally, 
the VRP is defined as a directed graph  
where  is the vertex set (  denotes 
the depot, vertex  denote the customers), 
and  is an arcs set 
representing the connection between the depot and 
the customers. In addition, there exists a homogeneous 
vehicle fleet of size m with known capacity  that 
have to serve the customers that are located in a 
certain geographical area. The associated cost of 
visiting the customers is represented by a symmetric 
matrix cost . The VRP consists on design 
m routes with the lowest cost satisfying: (i) each 
route starts and ends at the depot, (ii) each customer 
is visited once by a single vehicle, and (iii) the total 
demand of a route does not exceed . The VRP has 
been used widely real-life situations in which the 
customers’ demands are known. However, there are 
several specific situations where the vehicle routing 
problem turns away from the idealized model to 
incorporate more flexible models that respond to the 
dynamic and complex environment of the existing 
transportation systems, considering then the route 
design under uncertainty of some or all parameters, 
these models are called Stochastic Vehicle Routing 
Problem (SVRP) (Bianchi, Manfrin, et al., 2005). 

The VRPSD real-life situations arise due to delivery or 
collection of goods in which the company responsible 
for the distribution has customers with uncertain 
demand. Under this consideration, the demand is 
only revealed at the moment when the vehicle visits 
the customer. In the deterministic case, the routes 
are planned so that vehicles have enough capacity 
to meet the demands of the customers given some 
pre-established routes. If the demands are stochastic, 
the concept of “pre-established routes” has a different 

interpretation and it is necessary to use decision 
rules or routing policies that reinterpret the above 
concept (Manfrin, 2004). In literature, three main 
approaches have been studied regarding the type 
of routing policy that takes place (N Secomandi, 
2000): a) A priori (static policy, online). b) Dynamic 
(re-optimization policy, online). c) Mixed (preventive 
restocking policy).

The first policy is called static or a priori which is part 
of the two-stage stochastic processes. The first stage 
determines a sequence of customers (called a priori 
route) to be visited in that order for a vehicle and in 
the second stage the route runs as defined. If the route 
fails, a recursive action is taken. (Bertsimas, 1992) 
proposed cyclic heuristics based on the perspective 
of the worst case when the probability distribution 
is identical customers. (Gendreau, Laporte, Séguin, 
& Seguin, 1995) proposed an exact solution for the 
VRPSD using the integer L-Shaped method, in (Tan, 
Cheong, & Goh, 2007) a multi-objective evolutionary 
algorithm and simulation method for calculating 
the cost of the route was used. (Rei, Gendreau, & 
Soriano, 2010) proposed an exact method for solving 
the VRPSD where the objective function evaluation 
is done using Monte Carlo simulation. (Laporte, 
Louveaux, & Van Hamme, 2001) and (Hjorring & 
Holt, 1999) the L-Shaped method was implemented. 
(Mendoza, Castanier, Guéret, Medaglia, & Velasco, 
2010) and (Mendoza, Castanier, & Guéret, 2011) the 
VRPSD with multiple compartments was solved using 
memetic algorithms and evolutionary and constructive 
heuristics respectively.

In second place there are dynamic policies which are 
formulated mathematically as a multi-stage stochastic 
problem. (N Secomandi, 2000) developed a neuro 
dynamic programming methodology. (Christiansen & 
Lysgaard, 2007) solved the Vehicle Routing Problem 
with Capacity and Stochastic Demands (CVRPSD) 
through the exact branch-and-price method. (Novoa & 
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Storer, 2009) and (Nicola Secomandi, 2001) developed 
a rollout algorithm for solving the VRPSD with a 
single vehicle. (Novoa & Storer, 2009) implemented 
a rollout algorithm and Monte Carlo simulation are 
used. (Ak & Erera, 2007) presented the paired-vehicle 
strategy for VRPSD using Tabu Search. 

The last policy is the preventive restocking policy. 
This policy combines a priori and dynamic framing 
itself a two-stage stochastic process, in which the 
vehicle follows a route in the first stage priori 
yet enabled with state dependent rules that allow 
replenishment anticipated in the second stage. 
(Yang, Mathur, & Ballou, 2000) solved the VRPSD 
with preventive restocking for the case of one 
and multiple vehicles, developing the heuristics 
route first-cluster next and cluster first-cluster 
next. (Bianchi, Birattari, et al., 2005) tested the 
impact on the development of 18 simulated an-
nealing metaheuristics, Tabu search, ant colony 
and evolutionary algorithms, using the distance 
of the route a priori as a quick approximation of 
the objective function. (Ismail & Irhamah, 2008) 
the hybrid Genetic algorithms (GA) and Tabu 
search were implemented for a real application 
related to garbage collection in a residential area 
of Malaysia. (Tripathi, Kuriger, & Wan, 2009) 
incorporated an element for calculating the objective 
function based on the optimization technique by 
simulation. (Shanmugam, Ganesan, & Vanathi, 
2011) and (Galván, Arias, & Lamos, 2013) solved 
the VRPSD using the metaheuristics PSO and PSO 
with evolutionary operators respectively.

The rest of paper is organized as follows: Section 2 
defines the two approaches for the evaluation of the 
objective function values for the VRPSD; Section 3 
explains the metaheuristic GA; Section 4 discusses 
the computational results and finally, Section 5 shows 
some concluding remarks of this research.

Approaches for the computation of the 
objective function value for the VRPSD

The VRPSD under the preventive restocking policy 
is defined as follows:

Let  be a complete graph where:

•	  is the vertex set. The vertex 
 denotes the depot and vertex represent 

the customers.

•	  is an arcs set that 
connects the vertex.

•	 . is the cost matrix that denotes the travel 
cost between the vertex.

It is considered that  is symmetric and satisfies the 
triangular inequality .

Moreover, the customers have stochastic de-
mands  with known probability 
distributions. It is assumed that the demand of 
the customer  does not exceed the vehicle capa-
city  and it has a discrete probability distribution 

. The random variables are independents. The 
objective of the VRPSD considering the preventive 
restocking policy is to find an a priori tour and a pre-
ventive restocking policy at each vertex that minimize 
total expected cost. The costs under consideration in 
this problem are the following:

•	 Cost of travelling from a customer as other as 
planned.

•	 Restocking cost: cost of go back to the depot before 
to visit the next planned customer.

•	 Failure cost: cost of go back to the depot for 
replenish due to insufficiency on the vehicle 
capacity to serve a customer upon arrival.

The VRPSD can be formulated as a two-index 
stochastic program as proposed in (Laporte et al., 
2001). Let  be an integer variable equal to the 
number of times that the arc  appears in 
the first stage solution, that is, in the a priori tour. 

 can take the value of 0 or 1 if .  can 
also be equal 2 if the vehicle goes back to the depot 
between vertex and . In addition, let  
be the policy cost.

Subject to:



111Comparación entre los enfoques de programación dinámica y optimización por simulación para la solución del vrpsd  
con descarga preventiva

Copyright © 2014 Asociación Colombiana de Facultades de Ingeniería

Constraints (6) and (7) specify the degree of each 
vertex; constraint (8) ensures that no sub-route can 
be created and the total route demand does not exceed 
the vehicle capacity.

The literature presents two approaches for the evalua-
tion of the expected cost from the objective function 
for the VRPSD with preventive restocking. The first 
approach is based on dynamic programming (Yang 
et al., 2000) and the second one relies on a simulation 
approach, e.g. using Monte Carlo simulation for this 
purpose. The next subsections will discuss both 

approaches for the evaluation of the objective function 
for the VRPSD.

Dynamic Programming approach for the VRPSD 

An a priori tour is denoted as  for a 
particular vehicle. After serving the customer , it is 
assumed that vehicle has a residual capacity  and let 

 denote the total expected cost from the customer 
j onwards. If  represents the set of all possible loads 
that a vehicle can have after serving the customer j, 
then  for  satisfies (Manfrin, 2004):

  (1)

Where: 

  (2)

and 

  (3)

with the boundary condition

  (4)
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In equations (1)-(3),  represents the cost of 
going directly to customer  and  is the preven-
tive restocking cost. The above equations are used 
recursively in order to determine the value of the 
objective function of the planned route and the optimal 
sequence of decisions after attending to customers. 

 

Equation (4) represents the boundary condition which 
means that the expected cost after the last customer 
visited onwards, independent of any residual charging 
the vehicle at the time, is equal to the fixed cost of 
going from the customer  to the depot. Algorithm 1 
represents the computation of the total expected cost.

Algorithm 1. Computation of the expected value of the objective function

Simulation-Optimization approach for the VRPSD

The simulation optimization approach seeks to 
determine the best configuration of input parameters 
to feed the simulation model produced results 
close to the optimum. The approach consists of 

two modules: one module where optimization is 
carried out exploration in the search space through 
a method of optimization and simulation module 
which is responsible for measuring the optimality 
using a simulation model (Ólafsson & Kim, 2002) 
(Figure 1).

Figure 1. General scheme of the simulation-optimization approach

Genetic algorithms for the VRPSD

In this research the metaheuristic Genetic Algorithms 
(GA) was used for the exploration and exploitation of 

the solutions in the search space. Genetic algorithms 
are adaptive methods of artificial intelligence, based 
on the natural phenomenon of reproduction and natural 
selection of the fittest individual. Such algorithms are 
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used for solving problems where the solution space 
tends to be infinite. Broadly speaking, the genetic 
algorithm randomly searches and evaluates possible 
solutions in an optimization function. If the solution 
makes this function grows, the algorithm starts 
searching in areas close to the solution, if instead the 
proposed solution makes the optimization function 
decreases, the algorithm discards the solution.

In GA, the population consists of a set of chromosomes 
with correspond to the solutions. A crossover operator 
plays the role of reproduction and a mutation operator 
is assigned to make random changes in the solutions.

Initial population

The initial population corresponds to a set of indi-
vidual. An individual is represented by an a priori 
route which is encoded as the integer permutation

, where  denotes the depot, 
and  are the customers (chromosomes). This 
population could be generated randomly or using 
a heuristic method. For this research, the Nearest 
Neighbor Heuristic (NNH) was implemented for 
this purpose.

Fitness value

For each individual or a priori tour, the fitness 
value is measured in order to establish the objective 

function values. This value can be obtained using 
a Dynamic Programming approach or a simulation 
approach.

Selection 

The selection process consists in choosing two indi-
viduals (parent solutions) within the population. The 
selection procedure is stochastic and biased toward 
the best solutions using a roulette-wheel scheme 
(Berger & Barkaoui, 2003). 

Crossover

This evolutionary operator can be executed, for 
instance, by using tournament. In this research, 
we implemented the crossover method proposed 
by (Pereira, Tavares, Machado, & Costa, 2002). 
This operator, each individual receives genetic 
information expressed in terms of sub-route 
from another individual and inserts it in one of 
its own routes. 

Mutation

We used a swap mutation based operator adapted 
by the work of (Geetha, Ganesan, & Vanathi, 2010).

The algorithm 2 presents the general scheme for the 
solution of the VRPSD using GA.

 Algorithm 2. Genetic algorithm for the VRPSD
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Experimental setup and computational results

In order to measure the performance for the dynamic 
programming and simulation-optimization approaches, 

we execute a series of experiments over a carefully 
designed test bed. The test bed is constructed 
taking into account the factors which are defined 
in Table 1. 

Table 1. Definition of factors and levels for the Designs of experiments.

FACTOR LEVEL 1 LEVEL 2

Number of customers 

Customers location Uniform Normal distribution with two 
clusters

Average demand ]

Spread 

Customers served before the 
preventive restocking 

In addition, for the generation of customer demands, 
100 samples were considered for the simulation module 
and the customer demands follows a discrete uniform 
probability distribution. On the other hand, the GA 
parameters set for this research are the following: 
population size  and the mutation percentage 

All algorithms were implemented in Matlab 7.1 and 
executed on a computer with a processor Intel Core i3 
and 4GB of RAM. Since the dynamic programming 

algorithm requires considerable time for execution, time 
limits were established taking into account the number 
of customers defined, so that for , the time 
limit is 600 seconds and for , the time is equal 
to 1200 seconds. The results of the objective function 
values for the VRPSD under de dynamic programming 
and simulation-optimization approach are shown in 
Table 2 and Table 3, respectably. We used a design of 
experiments  (Table 1) where each experiment was 
replicated five times, and the conclusions are made with 
respect to the average value of the objective function.

Table 2. Computational results for the VRPSD using dynamic programming approach

EXP RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE STANDARD 
DEVIATION

1 4530 4581,3 4528,6 4528,7 4535 4531 2,34

2 2613 2618,85 2628,73 2610,2 2620,24 2618,2 5,87

3 1987,31 1994,06 1984,29 1990,38 1995,17 1990,2 3,72

4 3540,26 3545,18 3543,02 3540,21 3532,01 3540,1 4,08

5 8422,32 8424,22 8417,43 8419,64 8418,11 8420,34 2,34

6 4689 4693,41 4684,53 4694,48 4689,29 4690.10 3,24

7 3749,27 3743,09 3742,03 3744,2 3748,24 3745,4 2,62

8 6986,29 6989,46 6983,22 6983,66 6983,28 6985,2 2,21
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Table 3. Computational results for the VRPSD using simulation-optimization approach.

EXP RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 AVERAGE STANDARD 
DEVIATION

1 5103,92 5098,42 5121,99 5094,48 5098,49 5103,46 9,74

2 2882,82 2889,65 2854,73 2880,2 2880,24 2877,53 11,91

3 2257,31 2245,06 2244,49 2246,38 2245,87 2247,82 4,79

4 4058,76 4096,88 4067,02 4049,21 4102,71 4074,92 21,16

5 9276,72 9285,62 9268,53 9299,94 9243,31 9274,82 18,89

6 5085 5087,41 5074,53 5107,58 5110,89 5093,08 13,92

7 4121,47 4143,09 4122,03 4126,2 4130,46 4128,65 7,91

8 8016,96 7990,46 8013,87 8007,66 7997,86 8005,36 9,91

As shown in Table 2 and Table 3, the objective function 
values for the VRPSD using the dynamic programming 
approach are better than using Monte Carlo simulation, 
which at first sight it could be conclude that the best 

objective function estimator is dynamic programming 
approach. However, in terms of computational time (see 
Table 4), Monte Carlo simulation offers results close to 
the first approach in a reasonable computational time.

Table 4. Comparison of the computational time (seconds)

INSTANCE DYNAMIC 
PROGRAMMING

MONTE CARLO 
SIMULATION

1 600 281,5

2 600 303,05

3 600 287,84

4 600 295,83

5 1200 592,42

6 1200 586,75

7 1200 605,41

8 1200 586,55

Conclusions

This paper presented formally the single VRPSD with 
preventive restocking using two different approaches 
to the calculation of the objective function, the first 
is a dynamic programming approach (DP) and 
the second is simulation optimization approach 
using specifically Monte Carlo simulation. For the 
exploration and exploitation of the solutions in the 
search space, the metaheuristic genetic algorithm 
was developed.

In order to determine the best approach for the 
evaluation of the objective function for the VRPSD, 
both approaches were executed over a carefully 
design test bed. In this research, we used a design 
of experiments in order to measure the performance 
of the GA, the experiments take the main effects of 
the factors that influence over the objective function. 
Results show that although the DP approach provides 
better estimations in terms of objective function 
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values than Monte Carlo simulation, the second 
approach gives results close to the DP and with a 
significant reduction of the computational time with 
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