A methodology for the structural safety evaluation of a solar tracking system in Colombia

Authors

  • Heylen Polo Cano Universidad del Atlántico, Barranquilla
  • Ambrosio Valencia Romero Universidad del Atlántico, Barranquilla
  • Javier Roldán Mckinley Universidad del Atlántico, Barranquilla
  • James Díaz González BMT Designers & Planners, Washington

DOI:

https://doi.org/10.26507/rei.v7n14.260

Keywords:

wind load, azimuthal motion, zenithal motion, tracking panel, structural safety

Abstract

This work explores the mechanical parameters that influence the solar tracking structure performance. The wind force is considered as the mechanical parameter with the most influence to consider in the analysis. A complete dimensioning of the mechanical system, before the CAD stage, is carried out to follow up with the simulation of the structural model. A model to simulate the structural behavior under critical operating conditions in the working environment is also presented. A Graphic User Interface-GUI, written in Matlab®, was developed to integrate the variables involved in the selection of the safety factor for the structure. This GUI offers a friendly interactive tool to evaluate the structural safety in different scenarios. A guide to use the GUI was exemplified with an ecological park case scenario. The results were verified using Finite Element Analysis (FEA) in SolidWorks® software.


 

Downloads

Download data is not yet available.

Author Biographies

Heylen Polo Cano, Universidad del Atlántico, Barranquilla

Ingeniera Mecánica

Grupo DIMER

Universidad del Atlántico

Ambrosio Valencia Romero, Universidad del Atlántico, Barranquilla

Ingeniero Mecánico

Grupo DIMER

Universidad del Atlántico

Javier Roldán Mckinley, Universidad del Atlántico, Barranquilla

Profesor del Programa de Ingeniería Mecánica; Grupo DIMER, Universidad del Atlántico. PhD en Ingeniería Mecánica, University of Florida; MSc en Ingeniería Mecánica, University of Puerto Rico at Mayagüez; Ingeniero Mecánico, Universidad del Atlántico.

 

James Díaz González, BMT Designers & Planners, Washington

Jefe de Investigaciones de la division de Tecnología Avanzada en BMT Designers and Planners Inc.; PhD en Ingeniería Mecánica, Michigan Technological University; MSc en Ingeniería Mecánica, University of Puerto Rico at Mayagüez; Ingeniero Mecánico, Universidad del Atlántico.

References

ACI Committee 318. (2011). Building code requirements for structural concrete (ACI 318-11) and commentary (ACI 318R-02). Michigan, USA: Farmington Hills.

AISC Committee on Specifications. (2000). Load and resistance factor design specification LRFD AISC. Chicago, Illinois, USA: American Institute of Steel Construction, Inc.

ASM International. (2006). Atlas of fatigue curves. Sixth edition. USA: Carnes Publication services, Inc.

Astronomical Applications Department of the U.S. Naval Observatory. (n.d.). Sun or moon altitude/azimuth table. U.S. Naval Observatory, U.S. Navy, USA. Recuperado el 14 de mayo de 2012. From: http://aa.usno.navy.mil/data/docs/AltAz.php

Budynas, R. & Nisbett, J. K. (2006). Shigley’s mechanical engineering design. Eight Edition. USA: McGraw-Hill.

Cabanillas, J. (2009). The wind and the panacea of the stow position in the solar trackers. Recuperado el 18 de mayo de 2012. From: www.sunenergysite.eu/download/windload.pdf.

Fisher, J. & Kloiber, L. (2006). Steel design guide 1: Base plate and anchor rod design, second edition. USA: American Institute of Steel Construction, Inc.

Gil A., Acín A., Rueda F. & Mayor I. (2009). Structural and motion system dynamic analysis of a two-axes solar tracker under wind action. Simulia Customer Conference. London, England: Dassault Système

Grauvilardell, J. E., Lee, D., Hajjar, J. F., & Dexter R. J. (2005). Synthesis of design, testing and analysis research on steel column base plate connections in high-seismic zones. Minneapolis, Minnesota: University of Minnesota, Department of Civil Engineering.

Honeck, W. C. & Westphal, D. (1999). Practical design and detailing of steel column base plates. Structural Steel Educational. Council.Moraga, California, USA: Forell Elsesser Engineers, Inc.

Kirke, B. & Al-Jamel, I. H. (2004). Steel structures design manual to AS 4100. Australia: Brian Kirke and Iyad Hassan Al-Jamel

Koç, S. & Aydoğmuş, Z. (2009). A MATLAB®/GUI based fault simulation tool for power system education. Mathematical and Computational Applications, 14(3), 207-217.

Paneles solares de alto rendimiento. (2011). Paneles solares de alto rendimiento. Recuperado el: 14 de marzo de 2012 de http://es.euronews.com/2011/03/14/paneles-solares-de-alto-rendimiento/

Secretaría de Planeación Distrital de Barranquilla. (2008). Compilación de las normas vigentes del plan de ordenamiento territorial del Distrito de Barranquilla (Decreto No. 0154 DE 2000 y Acuerdo 003 de 2007), art. CXXXV. Barranquilla, Colombia: Alcaldía de Barranquilla.

Solar Energy Research Institute–SERI. (1987). Mean and peak wind load reduction on heliostats. USA: US Department of Energy.

Watkins, J. & Mitchell, E. (2009). A MATLAB® graphical user interface for linear quadratic control design. 30th ASEE/IEEE Frontiers in Education Conference. Kansas City, Missouri, USA: IEEE.

Published

2012-12-15

How to Cite

Polo Cano, H., Valencia Romero, A., Roldán Mckinley, J., & Díaz González, J. (2012). A methodology for the structural safety evaluation of a solar tracking system in Colombia. Revista Educación En Ingeniería, 7(14), 92–103. https://doi.org/10.26507/rei.v7n14.260

Issue

Section

Engineering and Development

Altmetric

QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
Crossref Cited-by logo